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Abstract—We present a randomized algorithm that computes
single-source shortest paths (SSSP) in O(m log8(n) logW ) time
when edge weights are integral and can be negative.1 This
essentially resolves the classic negative-weight SSSP problem.
The previous bounds are Õ((m + n1.5) logW ) [BLNPSSSW
FOCS’20] and m4/3+o(1) logW [AMV FOCS’20]. Near-linear
time algorithms were known previously only for the special case
of planar directed graphs [Fakcharoenphol and Rao FOCS’01].

In contrast to all recent developments that rely on sophisticated
continuous optimization methods and dynamic algorithms, our
algorithm is simple: it requires only a simple graph decom-
position and elementary combinatorial tools. In fact, ours is
the first combinatorial algorithm for negative-weight SSSP to
break through the classic Õ(m

√
n logW ) bound from over three

decades ago [Gabow and Tarjan SICOMP’89].
Index Terms—graphs and networks, path and circuit problems,

graph algorithms, analysis of algorithms

I. INTRODUCTION

We consider the single-source shortest paths (SSSP) prob-

lem with (possibly negative) integer weights. Given an m-edge

n-vertex directed weighted graph G = (V,E,w) with integral

edge weight w(e) for every edge e ∈ E and a source vertex

s ∈ V , we want to compute the distance from s to v, denoted

by distG(s, v), for every vertex in v.

Two textbook algorithms for SSSP are Bellman-Ford and

Dijkstra’s algorithm. Dijkstra’s algorithm is near-linear time

(O(m + n log n) time), but restricted to nonnegative edge

weights.2 With negative weights, we can use the Bellman-

Ford algorithm, which only requires that there is no negative-
weight cycle reachable from s in G; in particular, the algorithm

Full version is available at https://arxiv.org/abs/2203.03456.
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1Throughout, n and m denote the number of vertices and edges, respec-

tively, and W ≥ 2 is such that every edge weight is at least −W . Õ hides
polylogarithmic factors.

2In the word RAM model, Thorup improved the runtime to O(m +
n log log(C)) when C is the maximal edge weight [1] and to linear time
for undirected graphs [2].

either returns distG(s, v) �= −∞ for every vertex v or reports

that there is a cycle reachable from s whose total weight

is negative. Unfortunately, the runtime of Bellman-Ford is

O(mn).
Designing faster algorithms for SSSP with negative edge

weights (denoted negative-weight SSSP) is one of the most

fundamental and long-standing problems in graph algorithms,

and has witnessed waves of exciting improvements every

few decades since the 50s. Early works in the 50s, due

to Shimbel [3], Ford [4], Bellman [5], and Moore [6]

resulted in the O(mn) runtime. In the 80s and 90s, the

scaling technique led to a wave of improvements (Gabow [7],

Gabow and Tarjan [8], and Goldberg [9]), resulting in runtime

O(m
√
n logW ), where W ≥ 2 is the minimum integer such

that w(e) ≥ −W for all e ∈ E.3 In the last few years,

advances in continuous optimization and dynamic algorithms

have led to a new wave of improvements, which achieve faster

algorithms for the more general problems of transshipment and

min-cost flow, and thus imply the same bounds for negative-

weight SSSP (Cohen, Madry, Sankowski, Vladu [12]; Axiotis,

Madry, Vladu [13]; BLNPSSSW [14]–[16]). This line of work

resulted in an near-linear runtime (Õ((m+n1.5) logW ) time)

on moderately dense graphs [14] and m4/3+o(1) logW runtime

on sparse graphs [13].4 For the special case of planar directed

graphs [17]–[21], near-linear time complexities were known

since the 2001 breakthrough of Fakcharoenphol and Rao [19]

where the best current bound is O(n log2(n)/ log logn) [21].

No near-linear time algorithm is known even for a somewhat

larger class of graphs such as bounded-genus and minor-free

graphs (which still requires Õ(n4/3 logW ) time [22]). This

state of the art motivates two natural questions:

1) Can we get near-linear runtime for all graphs?
2) Can we achieve efficient algorithms without complex

machinery?
For the second question, note that currently all state-of-the-

art results for negative-weight SSSP are based on min-cost

3The case when n is big and W is small can be improved by the O(nωW )-
time algorithms of Sankowski [10], and Yuster and Zwick [11].

4Õ-notation hides polylogarithmic factors. The dependencies on W stated
in [13], [14] are slightly higher than what we state here. These dependencies
can be reduced by standard techniques (weight scaling, adding dummy source,
and eliminating high-weight edges).
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flow algorithms, and hence rely on sophisticated continuous

optimization methods and a number of complex dynamic

algebraic and graph algorithms (e.g. [23]–[28]). It would be

useful to develop simple efficient algorithms that are specif-

ically tailored to negative-weight SSSP, and thus circumvent

the complexity currently inherent in flow algorithms; the best

known bound of this kind is still the classic O(m
√
n log(W ))

from over three decades ago [8], [9]. A related question is

whether it is possible to achieve efficient algorithms for the

problem using combinatorial tools, or whether there are funda-

mental barriers that make continuous optimization necessary.

A. Our Result

In this paper we resolve both of the above questions for

negative-weight SSSP: we present a simple combinatorial

algorithm that reduces the running time all the way down to

near-linear.

Theorem I.1. There exists a randomized (Las Vegas) algo-
rithm that takes O(m log8(n) log(W )) time with high proba-
bility (and in expectation) for an m-edge input graph Gin and
source sin. It either returns a shortest path tree from sin or
returns a negative-weight cycle.

Our algorithm relies only on basic combinatorial tools; the

presentation is self-contained and only uses standard black-

boxes such as Dijkstra’s and Bellman-Ford algorithms. In

particular, it is a scaling algorithm enhanced by a simple graph

decomposition algorithm called Low Diameter Decomposition
which has been studied since the 80s; our decomposition is

obtained in a manner similar to some known algorithms (see

Section I-B for a more detailed discussion). Our main technical

contribution is showing how low-diameter decomposition—

which works only on graphs with non-negative weights—

can be used to develop a recursive scaling algorithm for

SSSP with negative weights. As far as we know, all pre-

vious applications of this decomposition were used for par-

allel/distributed/dynamic settings for problems that do not

involve negative weights, and our algorithm is also the first

to take advantage of it in the classical sequential setting; we

also show that in this setting, there is a simple and efficient

algorithm to compute it.

a) Perspective on Other Problems:: While our result is

specific to negative-weight SSSP, we note that question (2)
above in fact applies to a much wider range of problems.

The current landscape of graph algorithms is that for many

of the most fundamental problems, including ones taught in

undergraduate courses and used regularly in practice, the state-

of-the-art solution is a complex algorithm for the more general

min-cost flow problem: some examples include negative-

weight SSSP, bipartite matching, the assignment problem,

edge/vertex-disjoint paths, s-t cut, densest subgraph, max

flow, transshipment, and vertex connectivity. This suggests

a research agenda of designing simple algorithms for these

fundamental problems, and perhaps eventually their general-

izations such as min-cost flow. We view our result on negative-

weight SSSP as a first step in this direction.

b) Independent Result [29].: Independently from our re-

sult, the recent major breakthrough by Chen, Kyng, Liu, Peng,

Probst Gutenberg, and Sachdeva [29] culminates the line of

works based on continuous optimization (e.g. [12]–[16], [30]–

[36]) and achieves an almost-linear time bound5 for min-cost

flow. The authors thus almost match our bounds for negative-

weight SSSP as a special case of their result: their runtime is

m1+o(1) log(W ) versus our O(m ·polylog(n) log(W )) bound.

The two results are entirely different, and as far as we know

there is no overlap in techniques.

The above landmark result essentially resolves the running-

time complexity for a wide range of fundamental graph

problems, modulo the extra mo(1) factor. We believe that

this makes it a natural time to pursue question (2) for these

problems, outlined above.

B. Techniques

Our main contribution is a new recursive scaling algorithm

called ScaleDown: see Section IV, including an overview in

Section IV-A. In this subsection, we highlight other techniques

that may be of independent interest.

a) Low-Diameter Decomposition.: One of our key sub-

routines is an algorithm that decomposes any directed graph

with non-negative edge weights into strongly-connected com-

ponents (SCCs) of small diameter. In particular, the algorithm

computes a small set of edges Erem such that all SCCs in

the graph G \ Erem have small weak diameter. Although the

lemma below only applies to non-negative weights, we will

show that it is in fact extremely useful for our problem.

Lemma I.2. There is an algorithm
LowDiamDecomposition(G,D) with the following
guarantees:
• INPUT: an m-edge, n-vertex graph G = (V,E,w)

with non-negative integer edge weight function w and
a positive integer D.

• OUTPUT: A set of edges Erem with the following guar-
antees:
– each SCC of G \Erem has weak diameter at most D;

that is, if u, v are in the same SCC, then distG(u, v) ≤
D and distG(v, u) ≤ D.

– For every e ∈ E, Pr[e ∈ Erem] =

O
(
w(e)·(logn)2

D + n−10
)

. These probabilities are
not guaranteed to be independent.6

• RUNNING TIME: The algorithm has running time
O((m+ n) log2 n)

The decomposition above is similar to other low-diameter

decompositions used in both undirected and directed graphs,

though the precise guarantees vary a lot between papers [37]–

[49]. The closest similarity is to the algorithm PARTITION of

Bernstein, Probst-Gutenberg, and Wulff-Nilsen [48]. The main

5Õ(m1+o(1) log2 U) time when vertex demands, edge costs, and up-
per/lower edge capacities are all integral and bounded by U in absolute value.

6The 10 in the exponent suffices for our application but can be replaced
by an arbitrarily large constant.
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difference is that the algorithm of [48] needed to work in a

dynamic setting, and as a result their algorithm is too slow

for our purposes. Our decomposition algorithm follows the

general framework of [48], but with several key differences

to ensure faster running time; our algorithm is also simpler,

since it only applies to the static setting. In the full version of

the paper on arXiv [50], we present the entire algorithm from

scratch.

b) No Negative-Weight Cycle Assumption via a Black-
Box Reduction.: Although it is possible to prove Theorem I.1

directly, the need to return the actual cycle somewhat compli-

cates the details. For this reason, we focus most of our paper on

designing an algorithm that returns correct distances when the

input graph contains no negative-weight cycle and guarantees

nothing otherwise. See the description of subroutine SPmain
in Theorem III.4 as an example. We can focus on the above

case because we have a black-box reduction from Theorem I.1

to the above case that incurs an extra O(log2(n)) factor in the

runtime. See [50] for details.

c) Log Factors.: We focused this paper on ease of

presentation, and have thus not optimized the log factors in

Theorem I.1. For example, we could likely shave two log

factors by finding the cycle directly, rather than using the

black-box reduction above.

II. PRELIMINARIES

Throughout, we only consider graphs with integer weights.

For any weighted graph G = (V,E,w), define V (G) =
V,E(G) = E, and

Eneg(G) := {e ∈ E | w(e) < 0}.
Define WG := max{2,−mine∈E{w(e)}}; that is, WG is the

most negative edge weight in the graph7. Given any set of

edges S ⊆ E we define w(S) =
∑
e∈S w(e). We say that a

cycle C in G is a negative-weight cycle if w(C) < 0. We

define distG(u, v) to be the shortest distance from u to v;

if there is a negative-weight cycle on some uv-path then we

define distG(u, v) = −∞.

Consider graph G = (V,E,w) and consider subsets V ′ ⊆
G and E′ ⊆ E. We define G[V ′] to be the subgraph of G
induced by V ′. We slightly abuse notation and write H =
(V ′, E′, w) to denote the subgraph where the weight function

w is restricted to edges in E′. We define G \ V ′ = G[V \
V ′] and G \ E′ = (V,E \ E′, w); i.e. they are graphs where

we remove vertices and edges in V ′ and E′ respectively. We

sometimes write G\v and E\e instead of G\{v} and G\{e},
respectively, for any v ∈ V and e ∈ E. We say that a subgraph

H of G has weak diameter D if for any u, v ∈ V (H) we have

that distG(u, v) ≤ D. We always let Gin and sin refer to the

main input graph/source of Theorem I.1.

Assumption II.1 (Properties of input graph Gin; justified

by Lemma II.2). We assume throughout the paper that the

main input graph Gin = (V,E,win) satisfies the following

properties:

7We set WG ≥ 2 so that we can write log(WG) in our runtime

1) win(e) ≥ −1 for all e ∈ E (thus, WGin = 2).

2) Every vertex in Gin has constant out-degree.

Lemma II.2. Say that there is an algorithm as in Theorem I.1
for the special case when the graph Gin satisfies the properties
of Assumption II.1, with running time T (m,n). Then there is
algorithm as in Theorem I.1 for any input graph Gin with in-
tegral weights that has running time O(T (m,m) log(WGin

)).

Proof. Let us first consider the first assumption, i.e that

win(e) ≥ −1. The scaling framework of Goldberg [9] shows

that an algorithm for this case implies an algorithm for any

integer-weighted G at the expense of an extra log(WG) factor.8

For the assumption that every vertex in Gin has constant

out-degree, we use a by-now standard technique of creating

Θ(out-degree(v)) copies of each vertex v, so that each copy

has constant out-degree; the resulting graph was O(E) vertices

and O(E) edges.9

a) Dummy Source and Negative Edges.: The definitions

below capture a common transformation we apply to nega-

tive weights and also allow us to formalize the number of

negative edges on a shortest path. Note that most of our

algorithms/definitions will not refer to the input source sin,

but instead to a dummy source that has edges of weight 0 to

every vertex.

Definition II.3 (Gs,ws,G
B ,wB ,GBs ,wBs ). Given any graph

G = (V,E,w), we let Gs = (V ∪ {s}, E ∪ {(s, v)}v∈V , ws)
refer to the graph G with a dummy source s added, where there

is an edge of weight 0 from s to v for every v ∈ V and no

edges into s. Note that Gs has a negative-weight cycle if and

only if G does and that distGs
(s, v) = minu∈V distG(u, v).

For any integer B, let GB = (V,E,wB) denote the graph

obtained by adding B to all negative edge weights in G, i.e.

wB(e) = w(e) + B for all e ∈ Eneg(G) and wB(e) = w(e)
for e ∈ E \ Eneg(G). Note that (GB)s = (Gs)

B so we can

simply write GBs = (V ∪ {s}, E ∪ {(s, v)}v∈V , wBs ).
Definition II.4 (ηG(v), PG(v)). For any graph G = (V,E,w),
let Gs and s be as in Definition II.3. Define ηG(v) :=
min{|Eneg(G)⋂P | : P is a shortest sv − path in Gs} un-

less distG,s(s, v) = −∞ in which case we define ηG(v) :=
∞. Let η(G) = maxv∈V ηG(v). When distG(s, v) �= −∞, let

PG(v) be a shortest sv-path on Gs such that

|Eneg(G)
⋂
PG(v)| = ηG(v). (1)

When the context is clear, we drop the subscripts.

A. Price Functions and Equivalence

Our algorithm heavily relies on price functions, originally

introduced by Johnson [51]

8Quoting [9]: “Note that the basic problem solved at each iteration of the
bit scaling method is a special version of the shortest paths problem where
the arc lengths are integers greater or equal to −1.”

9One way to do this is to replace every vertex with a directed zero-weight
cycle whose size is the in-degree plus out-degree of the vertex and then attach
the adjacent edges to this cycle.
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Definition II.5 (Price Function). Consider a graph G =
(V,E,w) and let φ be any function: V → Z, Z is the set

of integers. Then, we define wφ to be the weight function

wφ(u, v) = w(u, v) + φ(u) − φ(v) and we define Gφ =
(V,E,wφ). We will refer to φ as a price function on V . Note

that (Gφ)ψ = Gφ+ψ .

Definition II.6 (Graph Equivalence). We say that two graphs

G = (V,E,w) and G′ = (V,E,w′) are equivalent if (1) any

shortest path in G is also a shortest path in G′ and vice-versa

and (2) G contains a negative-weight cycle if and only if G′

does.

Lemma II.7 ( [51]). Consider any graph G = (V,E,w)
and price function φ. For any pair u, v ∈ V we have
distGφ

(u, v) = distG(u, v) + φ(u)− φ(v), and for any cycle
C we have w(C) = wφ(C). As a result, G and Gφ are
equivalent. Finally, if G′ = (V,E,w) and G′ = (V,E,w′)
and w′ = c · w(e) for some positive c, then G and G′ are
equivalent.

The overall goal of our algorithm will be to compute a price

function φ such that all edge weights in Gφ are non-negative

(assuming no negative-weight cycle); we can then run Dijkstra

on Gφ. The lemma below, originally used by Johnson, will be

one of the tools we use.

Lemma II.8 ( [51]). Let G = (V,E) be a directed graph
with no negative-weight cycle and let s be the dummy source
in Gs. Let φ(v) = distGs

(s, v) for all v ∈ V . Then, all edge
weights in Gφ are non-negative. (The lemma follows trivially
from the fact that dist(s, v) ≤ dist(s, u) + w(u, v).)

III. THE FRAMEWORK

In this section we describe the input/output guarantees of

all the subroutines used in our algorithm, as well as some of

the algorithms themselves.

A. Basic Subroutines

Lemma III.1 (Dijkstra). There exists an algorithm
Dijkstra(G, s) that takes as input a graph G with non-
negative edge weights and a vertex s ∈ V and outputs a short-
est path tree from s in G. The running time is O(m+n log(n)).

It is easy to see that if G is a DAG (Directed Acyclic

Graph), computing a price function φ such that Gφ has non-

negative edge weights is straightforward: simply loop over the

topological order v1, ..., vn and set φ(vi) so that all incoming

edges have non-negative weight. The lemma below generalizes

this approach to graphs where only the “DAG part” has

negative edges.

Lemma III.2 (FixDAGEdges). There exists an algorithm
FixDAGEdges(G,P) that takes as input a graph G and a
partition P := {V1, V2, . . .} of vertices of G such that

1) for every i, the induced subgraph G[Vi] contains no
negative-weight edges, and

2) when we contract every Vi into a node, the resulting
graph is a DAG (i.e. contains no cycle).

The algorithm outputs a price function φ : V → Z such that
wφ(u, v) ≥ 0 for all (u, v) ∈ E. The running time is O(m+n).

Proof sketch. The algorithm is extremely simple: it loops over

the SCCs Vi in topological order, and when it reaches Vi it sets

the same price φ(v) for every v ∈ Vi that ensures there are no

non-negative edges entering Vi; since all φ(v) are the same,

this does not affect edge-weights inside Vi. The pseudocode

and analysis can be found in the full version of the paper [50].

The next subroutine shows that computing shortest paths in

a graph G can be done efficiently as long as η(v) is small on

average (see Definition II.4 for η(v)). Note that this subroutine

is the reason we use the assumption that every vertex has

constant out-degree (Assumption II.1).

Lemma III.3. (ElimNeg) There exists an algorithm
ElimNeg(G) that takes as input a graph G = (V,E,w) in
which all vertices have constant out-degree. The algorithm
outputs a price function φ such that wφ(e) ≥ 0 for all
e ∈ E and has running time O(log(n) · (n +

∑
v∈V ηG(v)))

(Definition II.4); note that if G contains a negative-weight
cycle then

∑
v∈V ηG(v) = ∞ so the algorithm will never

terminate and hence not produce any output.

Proof sketch. Creating the graph Gs as in Definition II.3,

computing all distGs
(s, v), and then applying Lemma II.7

yields the desired price function. Thus, it suffices to describe

how ElimNeg(G) computes distGs(s, v) for all v ∈ V .

The algorithm is a straightforward combination of Dijkstra’s

and Bellman-Ford’s algorithms. The algorithm maintains dis-

tance estimates d(v) for each vertex v. It then proceeds in

multiple iterations, where each iteration first runs a Dijkstra

Phase that ensures that all non-negative edges are relaxed and

then a Bellman-Ford Phase ensuring that all negative edges

are relaxed. Consider a vertex v and let P be a shortest

path from s to v in Gs with ηG(v) edges of Eneg(G). It

is easy to see that ηG(v) + 1 iterations suffice to ensure that

d(v) = distGs(s, v). In each of these iterations, v is extracted

from and added to the priority queue of the Dijkstra Phase

only O(1) times. Furthermore, after the ηG(v) + 1 iterations,

v will not be involved in any priority queue operations. Since

the bottleneck in the running time is the queue updates, we

get the desired time bound of O(log(n)·∑v∈V (ηG(v)+1)) =
O(log(n) · (n+

∑
v∈V ηG(v))).

This completes the proof sketch. The full proof can be found

in [50].

B. The Interface of the Two Main Algorithms

Our two main algorithms are called ScaleDown and

SPmain. The latter is a relatively simple outer shell. The main

technical complexity lies in ScaleDown, which calls itself

recursively.

Theorem III.4 (SPmain). There exists an algorithm
SPmain(Gin, sin) that takes as input a graph Gin and a
source sin satisfying the properties of Assumption II.1. If the
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algorithm terminates, it outputs a shortest path tree T from
sin. The running time guarantees are as follows:
• If the graph Gin contains a negative-weight cycle then

the algorithm never terminates.
• If the graph Gin does not contain a negative-weight cycle

then the algorithm has expected running time Tspmain =
O(m log5(n)).

Theorem III.5 (ScaleDown). There exists the following al-
gorithm ScaleDown(G = (V,E,w),Δ, B).

1) INPUT REQUIREMENTS:
a) B is positive integer, w is integral, and w(e) ≥ −2B

for all e ∈ E
b) If the graph G does not contain a negative-weight cycle

then the input must satisfy η(GB) ≤ Δ; that is, for
every v ∈ V there is a shortest sv-path in GBs with at
most Δ negative edges (Definitions II.3 and II.4)

c) All vertices in G have constant out-degree
2) OUTPUT: If it terminates, the algorithm returns an

integral price function φ such that wφ(e) ≥ −B for all
e ∈ E

3) RUNNING TIME: If G does not contain a negative-
weight cycle, then the algorithm has expected runtime
O

(
m log3(n) log(Δ)

)
. Remark: If G contains a negative-

weight cycle, there is no guarantee on the runtime,
and the algorithm might not even terminate; but if the
algorithm does terminate, it always produces a correct
output.

a) Remark: Termination and Negative-Weight Cycles.:
Note that for both algorithms above, if Gin contains a

negative-weight cycle then the algorithm might simply run

forever, i.e. not terminate and not produce any output. In

fact the algorithm SPmain never terminates if Gin contains a

negative-weight cycle. The algorithm ScaleDown may or may

not terminate in this case: our guarantee is only that if it does

terminate, it always produces a correct output.

In short, neither algorithm is required to produce an output

in the case where Gin contains a negative-weight cycle, so we

recommend the reader to focus on the case where Gin does

not contain a negative-weight cycle.

b) Proof sketch of Theorem I.1.: Algorithm SPmain
leads to our main result in Theorem I.1. First, it is easy

to see that SPmain leads to a Monte Carlo algorithm with

the following guarantees: if Gin does not contain a negative-

weight cycle then the algorithm outputs correct distances with

probability ≥ 1/2 and an error message otherwise; if Gin
contains a negative-weight cycle the algorithm always outputs

an error message. This Monte Carlo algorithm is obtained by

simply running SPmain(Gin, sin) for 2Tspmain time steps,

and returning an error message if SPmain fails to terminate

within that time; by Markov’s inequality, the probability of

success is ≥ 1/2.

We then show that a Monte Carlo algorithm with the above

guarantees can be converted in a black-box manner into the

Las Vegas result of Theorem I.1; See [50] for details.

IV. ALGORITHM ScaleDown (THEOREM III.5)

We start by describing the algorithm ScaleDown, as this

contains our main conceptual contributions; the much simpler

algorithm SPmain is described in the following section. Full

pseudocode of ScaleDown is given in Algorithm 1. The

algorithm mostly works with graph GB = (V,E,wB). For

the analysis, the readers may want to familiarize themselves

with, e.g., GBs , wBs , PGB (v) and η(GB) from Definitions II.3

and II.4. In particular, throughout this section, source s always
refers to a dummy source with edges of weight 0 to every

vertex.

Note that m = Θ(n) since the input condition requires

constant out-degree for every vertex. So, we use m and

n interchangeably in this section. We briefly describe the

ScaleDown algorithm and sketch the main ideas of the anal-

ysis in Section IV-A, before showing the full analysis in

Section IV-B.

A. Overview

The algorithm runs in phases, where in the last phase

it calls ElimNeg(GBφ2
) for some price function φ2. Recall

(Lemma III.3) that if ElimNeg terminates, it returns price

function ψ′ that makes all edges in GBφ2
non-negative; in other

words, GBφ3
contains no negative weights for φ3 = φ2 + ψ′.

This means that wφ3
(e) ≥ −B for all e ∈ E as desired

(because wB(e) ≤ w(e) +B). This already proves the output

correctness of ScaleDown (Item 2 of Theorem III.5). (See

Theorem IV.1 for the detailed proof.) Thus it remains to

bound the runtime when G contains no negative-weight cycle

(Item 3). In the rest of this subsection we assume that G
contains no negative-weight cycle.

Bounding the runtime when Δ ≤ 2 is easy: The algorithm

simply jumps to Phase 3 with φ2 = 0 (Line 1 in Algorithm 1).

Since η(GB) ≤ Δ ≤ 2 (the input requirement; Item 1b), the

runtime of ElimNeg(GB) is O((m+
∑
v∈V ηGB (v)) logm) =

O(mΔ logm) = O(m logm).
For Δ > 2, we require some properties from Phases

0-2 in order to bound the runtime of Phase 3. In Phase

0, we partition vertices into strongly-connected components

(SCCs)10 V1, V2, . . . such that each Vi has weak diameter

dB = BΔ/2 in G. We do this by calling Erem ←
LowDiamDecomposition(GB≥0, dB), where GB≥0 is obtained

by rounding all negative weights in GB up to 0; we then let

V1, V2, . . . be the SCCs of GB \ Erem. (We need GB≥0 since

LowDiamDecomposition can not handle negative weights.11)

See Lemma IV.3 for the formal statement and proof.

The algorithm now proceeds in three phases. In Phase 1 it

computes a price function φ1 that makes the edges inside each

SCC Vi non-negative; in Phase 2 it computes φ2 such that the

edges between SCCs in GB \ Erem are also non-negative;

finally in phase 3 it makes non-negative the edges in Erem by

calling ElimNeg.

10Recall that a SCC is a maximal set C ⊆ V such that for every u, v ∈ V ,
there are paths from u to v and from v to u. See, e.g., Chapter 22.5 in [52].

11One can also use G≥0 instead of GB
≥0. We choose GB

≥0 since some

proofs become slightly simpler.
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Algorithm 1: Algorithm for ScaleDown(G =
(V,E,w),Δ, B)

1 if Δ ≤ 2 then
2 Let φ2 = 0 and jump to Phase 3 (Line 10)

3 Let d = Δ/2. Let GB≥0 := (V,E,wB≥0) where

wB≥0(e) := max{0, wB(e)} for all e ∈ E
// Phase 0: Decompose V to SCCs
V1, V2, . . . with weak diameter dB in G

4 Erem ← LowDiamDecomposition(GB≥0, dB)
(Lemma I.2)

5 Compute Strongly Connected Components (SCCs) of

GB \ Erem, denoted by V1, V2, . . .
// Properties: (Lemma IV.3) For each
u, v ∈ Vi, distG(u, v) ≤ dB.
// (Lemma IV.4) If η(GB) ≤ Δ, then for
every v ∈ Vi, E[PGB (v) ∩ Erem] = O(log2 n)

// Phase 1: Make edges inside the
SCCs GB [Vi] non-negative

6 Let H =
⋃
iG[Vi], i.e. H only contains edges inside

the SCCs.

// (Lemma IV.5) If G has no
negative-weight cycle, then
η(HB) ≤ d = Δ/2.

7 φ1 ← ScaleDown(H,Δ/2, B)
// (Corollary IV.6) wHB

φ1

(e) ≥ 0 for all

e ∈ H
// Phase 2: Make all edges in GB \Erem
non-negative

8 ψ ← FixDAGEdges(GBφ1
\ Erem, {V1, V2, . . .})

(Lemma III.2)

9 φ2 ← φ1 + ψ // (Lemma IV.7) All edges in
(GB \ Erem)φ2

are non-negative

// Phase 3: Make all edges in GB

non-negative
10 ψ′ ← ElimNeg(GBφ2

) (Lemma III.3)

// (Theorem IV.2) expected time
O(m log3m)

11 φ3 = φ2 + ψ′ // (Theorem IV.1) All edges
in GBφ3

are non-negative.

12 return φ3 ; // Since wBφ3
(e) ≥ 0, we have

wφ3
(e) ≥ −B

(Phase 1) Our goal in Phase 1 is to compute φ1 such that

wBφ1
(e) ≥ 0 for every edge e in GB [Vi] for all i. To do this, we

recursively call ScaleDown(H,Δ/2, B), where H is a union

of all the SCCs G[Vi]. The main reason that we can recursively

call ScaleDown with parameter Δ/2 is because we can argue

that, when G does not contain a negative-weight cycle,

η(HB) ≤ d = Δ/2.

As a rough sketch, the above bound holds because if any

shortest path P from dummy source s in some (GB [Vi])s
contains more than d negative-weight edges, then it can be

shown that w(P ) < −dB; this is the step where we crucially

rely on the difference between wB(P ) and w(P ). Combining

w(P ) < −dB with the fact that GB [Vi] has weak diameter at

most dB implies that G contains a negative-weight cycle. See

Lemma IV.5 for the detailed proof.

(Phase 2) Now that all edges in GBφ1
[Vi] are non-

negative, we turn to the remaining edges in GB \ Erem.

Since these remaining edges (i.e. those not in the SCCs)

form a directed acyclic graph (DAG), we can simply call

FixDAGEdges(GBφ1
\ Erem, {V1, V2, . . .}) (Lemma III.2) to

get a price function ψ such that all edges in (GBφ1
\Erem)ψ =

GBφ2
\ Erem are non-negative. (See Lemma IV.7.)

(Phase 3) By the time we reach this phase, the only negative

edges remaining are the ones in Erem; that is, Eneg(GBφ2
) ⊆

Erem. We are now ready to show that the runtime of Phase

3, which is O((m+
∑

v∈V ηGB
φ2

(v)) logm) (Lemma III.3), is

O(m log3m) in expectation.

We do so by proving that for any v ∈ V ,

E
[
ηGB

φ2

(v)
]
= O(log2m).

(See Equation (5) near the end of the next subsection.)

A competitive reader might want to try to prove the

above via a series of inequalities: ηGB
φ2

(v) ≤ |PGB (v) ∩
Eneg(GBφ2

)| ≤ |PGB (v) ∩ Erem|, and also, the guarantees

of LowDiamDecomposition (Lemma I.2) imply that after

Phase 0, E [|PGB (v) ∩ Erem|] = O(log2m). (Proved in

Lemma IV.4.)

Finally, observe that there are O(logΔ) recursive calls, and

the runtime of each call is dominated by the O(m log3m)
time of Phase 3. So, the total expected runtime is

O(m log3(m) logΔ)
a) Remark.: Our sequence of phases 0-3 is reminiscent

of the sequencing used by Bernstein, Probst-Gutenberg, and

Saranurak in their result on dynamic reachability [53], al-

though the actual work within each phase is entirely different,

and the decompositions have different guarantees. The authors

of [53] decompose the graph into a DAG of expanders plus

some separator edges (analogous to our phase 0); they then

handle reachability inside expanders (phase 1), followed by

reachability using the DAG edges (phase 2), and finally

incorporate the separator edges (phase 3).

B. Full Analysis

Theorem III.5 follows from Theorems IV.1 and IV.2 below.

We start with Theorem IV.1 which is quite trivial to prove.

Theorem IV.1. ScaleDown(G = (V,E,w),Δ, B) either does
not terminate or returns φ = φ3 such that wφ(e) ≥ −B for
all e ∈ E.

Proof. Consider when we call ElimNeg(GBφ2
) (Lemma III.3)

in Phase 3 for some integral price function φ2. Either this step

does not terminate or returns an integral price function ψ′ such

that (GBφ2
)ψ′ = GBφ2+ψ′ = GBφ3

contains no negative-weight
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edges; i.e. wBφ3
(e) ≥ 0 for all e ∈ E. Since wB(e) ≤ w(e)+B,

we have wφ3(e) ≥ wBφ3
(e)−B ≥ −B for all e ∈ E.

Theorem IV.1 implies that the output condition of

ScaleDown (item 2 in Theorem III.5) is always satisfied,

regardless of whether G contains a negative-weight cycle or

not. It remains to show that if G does not contain a negative-

weight cycle, then ScaleDown(G = (V,E,w),Δ, B) has

expected runtime of O(m log3(m) log(Δ)). It suffices to show

the following.

Theorem IV.2. If G does not contain a negative-weight cycle,
then the expected time complexity of Phase 3 is O(m log3m).

This suffices because, first of all, it is easy to see that Phase

0 requires O(m log2(m)) time (by Lemma I.2) and other

phases (except the recursion on Line 7) requires O(m + n)
time. Moreover, observe that if G contains no negative-

weight cycle, then the same holds for H in the recursion

call ScaleDown(H,Δ/2, B) (Line 7 of Algorithm 1); thus,

if G contains no negative-weight cycle, then all recursive

calls also get an input with no negative-weight cycle. So, by

Theorem IV.2 the time to execute a single call in the recursion

tree is O(m log3m) in expectation. Since there are O(logΔ)
recursive calls, the total running time is O(m log3(m) log(Δ))
by linearity of expectation.

a) Proof of Theorem IV.2.: The rest of this subsection is

devoted to proving Theorem IV.2. From now on, we consider

any graph G that does not contain a negative-weight cycle. (We

often continue to state this assumption in lemma statements

so that they are self-contained.)

b) Base case: Δ ≤ 2.: This means that for every vertex

v, ηGB (v) ≤ η(GB) ≤ Δ ≤ 2 (see the input requirement of

ScaleDown in Item 1b of Theorem III.5). So, the runtime of

Phase 3 is

O

((
m+

∑
v∈V

ηGB (v)

)
logm

)
= O (mΔ logm)

= O (m logm) .

We now consider when Δ > 2 and show properties achieved

in each phase. We will use these properties from earlier phases

in analyzing the runtime of Phase 3.

c) Phase 0: Low-diameter Decomposition.: It is straight-

forward that the SCCs G[Vi] have weak diameter at most dB
(this property will be used in Phase 1):

Lemma IV.3. For every i and every u, v ∈ Vi, distG(u, v) ≤
dB.

Proof. For every u, v ∈ Vi, we have distG(u, v) ≤
distGB

≥0
(u, v) ≤ dB where the first inequality is because

w(e) ≤ wB≥0(e) for every edge e ∈ E and the second inequal-

ity is by the output guarantee of LowDiamDecomposition
(Lemma I.2).

Another crucial property from the decomposition is this:

Recall from Definition II.4 that PGB (v) is the shortest sv-

path in GBs with ηGB (v) negative-weight edges. We show

below that in expectation PGB (v) contains only O(log2 n)
edges from Erem. This will be used in Phase 3.

Lemma IV.4. If η(GB) ≤ Δ, then for every v ∈ V ,
E [|PGB (v) ∩ Erem|] = O(log2m).

Proof. Consider any v ∈ V . The crux of the proof is the

following bound on the weight of PGB (v) in GB≥0:

wB≥0(PGB (v)) ≤ ηGB (v) ·B (2)

where we define wB≥0(s, u) = 0 for every u ∈ V . Recall

the definition of of wBs from Definition II.3 and note that

wBs (PGB (v)) ≤ 0 because there is an edge of weight 0 from

s to every v ∈ V . We thus have Equation (2) because

wB≥0(PGB (v)) ≤ wBs (PGB (v)) + |PGB (v) ∩ Eneg(GB)| ·B
≤ |PGB (v) ∩ Eneg(GB)| ·B
= ηGB (v) ·B

where the first inequality follows since wB(e) ≥ −B for all

e ∈ E, the second inequality follows since wBs (PGB (v)) ≤
0, and the equality follows by definition of PGB (v). Re-

call from the output guarantee of LowDiamDecomposition
(Lemma I.2) that Pr[e ∈ Erem] = O(wB≥0(e) · (log n)2/D +
n−10), where in our case D = dB = BΔ/2. This, the linearity

of expectation, and (2) imply that

E[PGB (v) ∩ Erem]

= O

(
wB≥0(PGB (v)) · (log n)2

BΔ/2
+ |(PGB (v))| · n−10

)

(2)
= O

(
2ηGB (v) · (log n)2

Δ
+ n−9

)

which is O(log2 n) when η(GB) ≤ Δ.

d) Phase 1: Make edges inside the SCCs GB [Vi] non-
negative.: We argue that ScaleDown(H,Δ/2, B) is called

with an input that satisfies its input requirements (Theo-

rem III.5). The most important requirement is η(HB) ≤ Δ/2
(Item 1b) which we prove below (other requirements are

trivially satisfied). Recall that we set d := Δ/2 in Line 3.

Lemma IV.5. If G has no negative-weight cycle, then
η(HB) ≤ d = Δ/2.

Proof. Consider any vertex v ∈ V . Let P := PHB (v) \ s; i.e.

P is obtained by removing s from a shortest sv-path in HB
s

that contains ηHB (v) negative weights in HB
s . Let u be the

first vertex in P . Note three easy facts:

(a) wHB (e) = wH(e) +B for all e ∈ Eneg(HB),
(b) |Eneg(HB) ∩ P | = |Eneg(HB) ∩ PHB (v)| = ηHB (v),

and

(c) wHB (P ) = wHB
s
(PHB (v)) ≤ wHB

s
(s, v) = 0,

where (b) and (c) are because the edges from s to u and v in

HB
s have weight zero. Then,

distG(u, v) ≤ wH(P )
(a)

≤ wHB (P )− |Eneg(HB) ∩ P | ·B
(b)
= wHB (P )− ηHB (v) ·B

(c)

≤ −ηHB (v) ·B. (3)
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Note that u and v are in the same SCC Vi;
12 thus, by

Lemma IV.3:

distG(v, u) ≤ dB. (4)

If G contains no negative-weight cycle, then distG(u, v) +
distG(v, u) ≥ 0 and thus ηHB (v) ≤ dB · (1/B) = d by

Equations (3) and (4). Since this holds for every v ∈ V ,

Lemma IV.5 follows.

Consequently, ScaleDown (Theorem III.5) is guaranteed to

output φ1 as follows.

Corollary IV.6. If G has no negative-weight cycle, then all
edges in GBφ1

[Vi] are non-negative for every i.

e) Phase 2: Make all edges in GB \Erem non-negative.:
Now that all edges in GBφ1

[Vi] are non-negative, we turn

to the remaining edges in GB \ Erem. Intuitively, since

these remaining edges (i.e. those not in the SCCs) form a

directed acyclic graph (DAG), calling FixDAGEdges(GBφ1
\

Erem, {V1, V2, . . .}) (Lemma III.2) in Phase 2 produces the

following result.

Lemma IV.7. If G has no negative-weight cycle, all weights
in GBφ2

\ Erem are non-negative.

Proof. Clearly, GBφ1
\Erem and {V1, V2, . . .} satisfy the input

conditions of Lemma III.2, i.e. (1) (GB\Erem)φ1
[Vi] contains

no negative-weight edges for every i (this is due to Corol-

lary IV.6), and (2) when we contract every Vi into a node, the

resulting graph is a DAG (this follows from the fact that the

Vi are precisely the (maximal) SCCs of GBφ1
\Erem).13 Thus,

FixDAGEdges((GB \Erem)φ1
, {V1, V2, . . .}) returns ψ such

that (GBφ1
\Erem)ψ = GBφ2

\Erem contains no negative-weight

edges.

f) Phase 3’s runtime.: Now we are ready to prove

Theorem IV.2, i.e. the runtime bound of ElimNeg(GBφ2
) in

Phase 3 when G contains no negative-weight cycle. Re-

call (Lemma III.3 and definition II.4) that the runtime of

ElimNeg(GBφ2
) is

O

((
m+

∑
v∈V

ηGB
φ2

(v)

)
logm

)

Fix any v ∈ V . Note that, regardless of the value of φ2,

PGB (v) is a shortest sv-path in (GBφ2
)s (because (GBφ2

)s and

GBs are equivalent and PGB (v) is a shortest sv-path in GBs by

definition). Thus,

ηGB
φ2

(v) = min{|P ∩ Eneg(GBφ2
)| : P is a shortest sv-path

in (GBφ2
)s}

≤ |PGB (v) ∩ Eneg(GBφ2
)|

where the equality follows from Definition II.4 and the in-

equality follows by the above.

12in fact all vertices in P are in the same SCC Vi, because we define
H =

⋃
i G[Vi].

13See, e.g., Lemma 22.14 in [52].

By Lemma IV.7, all negative-weight edges in GBφ2
are in

Erem, i.e. Eneg(GBφ2
) ⊆ Erem; so,

ηGB
φ2

(v) ≤ |PGB (v) ∩ Erem|.

By Lemma IV.4 and the fact that η(GB) ≤ Δ (input require-

ment Item 1b in Theorem III.5),14

E
[
ηGB

φ2

(v)
]
≤ E [|PGB (v) ∩ Erem|] = O(log2m). (5)

Thus, the expected runtime of ElimNeg(GBφ2
) is

O

((
m+ E

[∑
v∈V

ηGB
φ2

(v)

])
logm

)
= O

(
m log3m

)
.

V. ALGORITHM SPmain (THEOREM III.4)

In this section we present algorithm SPmain(Gin, sin)
(Theorem III.4), which always runs on the main input

graph/source.

a) Description of Algorithm SPmain(Gin, sin).: See

Algorithm 2 for pseudocode. Recall that if Gin contains a

negative-weight cycle, then the algorithm is not supposed to

terminate; for intuition, we recommend the reader focus on

the case where Gin contains no negative-weight cycle.

The algorithm first creates an equivalent graph Ḡ by scaling

up edge weights by 2n (Line 1), and also rounds B (Line 2),

all to ensure that everything remains integral. It then repeatedly

calls ScaleDown until we have a price function φt such that

wφt(e) ≥ −1 (See for loop in Line 4). The algorithm then

defines a graph G∗ = (V,E,w∗) with w∗(e) = wφt(e) + 1
(Line 7). In the analysis, we will argue that because we

are dealing with the scaled graph Ḡ, the additive +1 is

insignificant and does not affect the shortest path structure

(Claim V.3), so running Dijkstra on G∗ will return correct

shortest paths in G (Lines 8 and 9).

b) Correctness: We focus on the case where the algo-

rithm terminates, and hence every line is executed. First we

argue that weights in G∗ (Line 7) are non-negative.

Claim V.1. If the algorithm terminates, then for all e ∈ E
and i ∈ [0, t := log2(B)] we have that w̄i is integral and
that w̄i(e) ≥ −B/2i for all e ∈ E. Note that this implies
that w̄t(e) ≥ −1 for all e ∈ E, and so the graph G∗ has
non-negative weights.

Proof. We prove the claim by induction on i. For base case

i = 0, the claim holds for Ḡφ0
= Ḡ because win(e) ≥ −1

(see Assumption II.1), so w̄(e) ≥ −2n ≥ −B (see Lines 1

and 2).

Now assume by induction that the claim holds for Ḡφi−1
.

The call to ScaleDown(Ḡφi−1
,Δ := n,B/2i) in Line 5

satisfies the necessary input properties (See Theorem III.5):

14The expectation in (5) is over the random outcomes of the low-diameter
decomposition in Phase 0 and the recursion in Phase 1. Note that both
ηGB

φ2

(v) and |PGB (v) ∩ Erem| are random variables. Since we always

have ηGB
φ2

(v) ≤ |PGB (v) ∩ Erem|, we also have E

[
ηGB

φ2

(v)

]
≤

E [|PGB (v) ∩ Erem|].
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Algorithm 2: Algorithm for SPmain(Gin =
(V,E,win), sin)

1 w̄(e)← win(e) · 2n for all e ∈ E, Ḡ← (V,E, w̄),
B ← 2n. // scale up edge weights

2 Round B up to nearest power of 2 // still have
w̄(e) ≥ −B for all e ∈ E

3 φ0(v) = 0 for all v ∈ V // identity price
function

4 for i = 1 to t := log2(B) do
5 ψi ← ScaleDown(Ḡφi−1

,Δ := n,B/2i)
6 φi ← φi−1 + ψi // (Claim V.1)

wφi
(e) ≥ −B/2i for all e ∈ E

7 G∗ ← (V,E,w∗) where w∗(e)← w̄φt(e) + 1 for all

e ∈ E.

// Observe: G∗ in above line has
non-negative weights

8 Compute a shortest path tree T from s using

Dijkstra(G∗, s) (Lemma III.1)

// (Claim V.3) Will Show: any
shortest path in G∗ is also shortest
in G

9 return shortest path tree T .

property 1a holds by the induction hypotheses; property 1b

holds because we have ηG(v) ≤ n for any graph G with

no negative-weight cycle; property 1c holds because Gin has

constant out-degree, and the algorithm never changes the graph

topology. Thus, by the output guarantee of ScaleDown we

have that (w̄φi−1
)ψi

(e) ≥ (B/2i−1)/2 = B/2i. The claim

follows because as noted in Definition II.5, (w̄φi−1
)ψi

=
w̄φi−1+ψi

= w̄φi
.

Corollary V.2. If Gin contains a negative-weight cycle then
the algorithm does not terminate.

Proof. Say, for contradiction, that the algorithm terminates;

then by Claim V.1 we have that w̄φt(e) ≥ −1. Now, let C be

any negative-weight cycle in Gin. Since all weights in Ḡ are

multiples of 2n (Line 1), we know that w̄(C) ≤ −2n. But we

also know that w̄φt
(C) ≥ −|C| ≥ −n. So w̄(C) �= w̄φt

(C),
which contradicts Lemma II.7.

Now we show that the algorithm produces a correct output.

Claim V.3. Say that Gin contains no negative-weight cycle.
Then, the algorithm terminates, and if P is a shortest sv-path
in G∗ (Line 7) then it is also a shortest sv-path in Gin. Thus,
the shortest path tree T of G∗ computed in Line 9 is also a
shortest path tree in Gin.

Proof. The algorithm terminates because each call to

ScaleDown(Ḡφi−1 ,Δ := n,B/2i) terminates, because Ḡφi−1

is equivalent to Gin (Lemma II.7) and so does not contain a

negative-weight cycle. Now we show that

P is also a shortest path in Ḡφt
(6)

which implies the claim because Ḡφt
and Gin are equivalent.

We assume that s �= v because otherwise the claim is trivial.

Observe that since all weights in Ḡ are multiples of 2n (Line

1), all shortest distances are also multiples of 2n, so for any

two sv-paths Psv and P ′sv , |w̄(Psv) − w̄(P ′sv)| is either 0 or

> n. It is easy to check that by Lemma II.7, we also have that

|w̄φt
(Psv)− w̄φt

(P ′sv)| is either 0 or > n. (7)

Moreover, by definition of G∗ we have

w̄φt
(Psv) < w∗(Psv) = w̄φt

(Psv) + |Psv| < w̄φt
(Psv) + n.

(8)

Now, we prove (6) . Assume for contradiction that there was

a shorter path P ′ in Ḡφt
. Then,

w̄φt
(P )− w̄φt

(P ′)
(7)
> n. (9)

So, w∗(P ′)
(8)
< w̄φt

(P ′)+n
(9)
< w̄φt

(P )
(8)
< w∗(P ), contradicting

P being shortest in G∗.

c) Running Time Analysis: By Corollary V.2, if Gin
does not contain a negative-weight cycle then the algorithm

does not terminate, as desired. We now focus on the case

where Gin does not contain a negative-weight cycle. The

running time of the algorithm is dominated by the log(B) =
O(log(n)) calls to ScaleDown(Ḡφi−1

,Δ := n,B/2i). Note

that all the input graphs Ḡφi−1 are equivalent to Gin, so

they do not contain a negative-weight cycle. By Theorem

III.5, the expected runtime of each call to ScaleDown is

O(m log3(n) log(Δ)) = O(m log4(n)). So, the expected run-

time of SPmain is O(m log5(n).

VI. ALGORITHM FOR LOW-DIAMETER DECOMPOSITION

In this section, we prove Lemma I.2. We start with some

basic definitions.

Definition VI.1 (balls and boundaries). Given a directed graph

G = (V,E), a vertex v ∈ V , and a distance-parameter R, we

define BalloutG (v,R) = {u ∈ V | dist(v, u) ≤ R}. We define

boundary(BalloutG (v,R)) = {(x, y) ∈ E | x ∈ BalloutG (v,R)∧
y /∈ BalloutG (v,R)}. Similarly, we define BallinG(v,R) = {u ∈
V | dist(u, v) ≤ R} and we define boundary(BallinG(v,R)) =
{(x, y) ∈ E | y ∈ BallinG(v,R) ∧ x /∈ BallinG(v,R)}. We often

use Ball*G to denote that a ball can be either an out-ball or an

in-ball.

Definition VI.2 (Geometric Distribution). Consider a coin

whose probability of heads is p ∈ (0, 1]. The geometric distri-

bution Geo(p) is the probability distribution of the number X
of independent coin tosses until obtaining the first heads. We

have Pr[X = k] = p(1− p)k−1 for every k ∈ {1, 2, 3, ...}.
Remark VI.3. In Lemma I.2 and throughout this section, n
always refers to the number of vertices in the main graph
Gin, i.e. graph in which we are trying to compute shortest
paths. This is to ensure that ”high probability” is defined in
terms of the number of vertices in Gin, rather than in terms
of potentially small auxiliary graphs. Note that whenever our
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shortest path algorithm executes LDD(G,D) we always have
|V (G)| ≤ n (we never add new vertices).

a) The algorithm: The pseudocode for our low-diameter

decomposition algorithm can be found in Algorithm 3.

Roughly, in Phase 1 each vertex is marked as either in-light,
out-light, or heavy. In Phase 2 we repeatedly “remove” balls

centered at either in-light or out-light vertices: Let v be any in-

light vertex (the process is similar for out-light vertices). Con-

sider a ball BallinG(v,Rv) with radius Rv selected randomly

from the geometric distribution Geo(p) (Lines 12 and 13;

using, e.g., [54]). We add edges pointing into this ball (i.e.

edges in boundary(BallinG(v,Rv))) to Eboundary, which will

be later added to Erem. We recurse the algorithm on this

ball (Line 16) which may add more edges to Erem (via

Erecurse). Finally, we remove this ball from the graph and

repeat the process. Note that the algorithm may also terminate

prematurely with Erem = E(G) in Lines 15 and 20. We will

show that this happens with low probability.

Due to the space limit, we defer the analysis to the full

version [55].

VII. PROOF OF THEOREM I.1 VIA A BLACK-BOX

REDUCTION

In this section, we prove Theorem I.1 using the following

Monte Carlo algorithm as a black box:

Theorem VII.1. There exists a randomized algorithm that
takes O(m log6(n) log(WGin)) time for an m-edge input
graph Gin and source sin and behaves as follows:
• if Gin contains a negative-weight cycle, then the algo-

rithm always returns an error message,
• if Gin contains no negative-weight cycle, then the al-

gorithm returns a shortest path tree from sin with high
probability, and otherwise returns an error message.

Note that the algorithm always outputs either an error mes-
sage, or a (correct) shortest path tree.

In the following, let SPMonteCarlo(Gin, sin) refer to the

algorithm of Theorem VII.1. The goal of this section is to give

a Las Vegas algorithm, SPLasVegas(Gin, sin), whose running

time is O(m log8(n)) w.h.p when Gin satisfies the properties

of assumption II.1. Applying the black-box reduction Lemma

II.2 extends this to general Gin and yields Theorem I.1.

The first step of SPLasVegas will be to find the smallest

integer B ≥ 0 such that no negative cycles exist in GBin. This is

done using the algorithm FindThresh of the following lemma.

Lemma VII.2. Let H be an m-edge n-vertex graph with
integer weights and let s ∈ V (H). Then there is an algorithm,
FindThresh(H, s) which outputs a value B ≥ 0 such that
w.h.p.,
• If H has no negative cycles then B = 0, and
• If H has a negative cycle then B > 0, HB−1 contains a

negative cycle, and HB does not.
The running time of FindThresh(H, s) is
O(m log6(n) log2(WH)).

Algorithm 3: Algorithm for LDD(G = (V,E), D)

1 Let n be the global variable in Remark VI.3

2 G0 ← G,Erem ← ∅
// Phase 1: mark vertices as light or
heavy

3 k ← c ln(n) for large enough constant c
4 S ← {s1, . . . , sk}, where each si is a random node in

V // possible: si = sj for i �= j
5 For each si ∈ S compute BallinG(si, D/4) and

BalloutG (si, D/4)
6 For each v ∈ V compute BallinG(v,D/4)

⋂
S and

BalloutG (v,D/4)
⋂
S using Line 5

7 foreach v ∈ V do
8 If |BallinG(v,D/4)

⋂
S| ≤ .6k, mark v in-light

// whp |BallinG(v,D/4)| ≤ .7|V (G)|
9 Else if |BalloutG (v,D/4)

⋂
S| ≤ .6k, mark v

out-light // whp |BalloutG (v,D/4)| ≤ .7|V (G)|
10 Else mark v heavy // w.h.p

BallinG(v,D/4) > .5|V (G)| and
BalloutG (v,D/4) > .5|V (G)|

// Phase 2: carve out balls until no
light vertices remain

11 while G contains a node v marked ∗-light for
∗ ∈ {in, out} do

12 Sample Rv ∼ Geo(p) for

p = min{1, 80 log(n)/D}.
13 Compute Ball*G(v,Rv).
14 Eboundary ← boundary(Ball*G(v,Rv)) // add

boundary edges of ball to Erem.

15 If Rv > D/4 or |Ball*G(v,Rv)| > .7|V (G)| then

return Erem ← E(G) and terminate

// Pr[terminate] ≤ 1/n20

16 Erecurse ← LDD(G[Ball*G(v,Rv)], D)
// recurse on ball

17 Erem ← Erem
⋃
Eboundary

⋃
Erecurse.

18 G← G \Ball*G(v,Rv) // remove ball from
G

// Clean Up: check that remaining
vertices have small weak diameter in
initial input graph G0

19 Let v be an arbitrary vertex of G.

20 If BallinG0
(v,D/2) � V (G) or

BalloutG0
(v,D/2) � V (G) then then return

Erem ← E(G) and terminate // Pr[terminate]
≤ 1/n20

// if above does not terminate, then
all remaining vertices in V (G) have
weak diameter ≤ D

21 Return Erem
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In the following, if the high probability event of Lemma VII.2

holds, we refer to B as a correct value.

A. The Las Vegas algorithm

Recall our assumption that Gin satisfies w(e) ≥ −1 for

each e ∈ Ein. Pseudo-code for SPLasVegas(Gin, sin), can be

found in Algorithm 4. For intuition when reading the pseudo-

code, note that we will show that w.h.p probability none of

the restart events occur.

Algorithm 4: Algorithm SPLasVegas(Gin, sin)

1 Let G′ be Gin with every edge weight multiplied by

n3

2 B ← FindThresh(G′, sin)
3 if B = 0 then
4 if SPMonteCarlo(Gin, sin) returns error then

restart SPLasVegas(Gin, sin);
5 Let T be the tree output by

SPMonteCarlo(Gin, sin)
6 return T

7 if SPMonteCarlo((G′)B , sin) returns error then
restart SPLasVegas(Gin, sin);

8 Let φ(v) = dist(G′)B (sin, v) for all v ∈ V be obtained

from the tree output by SPMonteCarlo((G′)B , sin)
9 G+ ← ((G′)B)φ // (Lemma II.7)

edge-weights in G+ are non-negative
10 Obtain the subgraph G≤n of G+ consisting of edges

of weight at most n
11 if G≤n is acyclic then restart SPLasVegas(Gin, sin);
12 Let C be an arbitrary cycle of G≤n
13 if C is not negative in Gin then restart

SPLasVegas(Gin, sin);
14 return C

Correctness of SPLasVegas(Gin, sin) is trivial as the algo-

rithm explicitly checks that its output is correct just prior to

halting:

Lemma VII.3. If SPLasVegas(Gin, sin) outputs a cycle, that
cycle is negative in Gin. If SPLasVegas(Gin, sin) outputs a
tree, that tree is a shortest path tree from sin in Gin.

Due to the space limit, we defer the running time analysis

to the full version [55].

VIII. OPEN PROBLEMS

We already mentioned a research agenda of designing fast

simple algorithms for fundamental problems in Section I.

While the ultimate goal is such an algorithm for the min-

cost flow problem, getting such an algorithm for maximum-

cardinality bipartite matching problem would already be a

breakthrough.

Another extremely important direction is developing algo-

rithmic techniques and frameworks that can be used across

different models of computation. It remains to check whether

our techniques can be used to show that negative-weight

SSSP can be solved as efficiently as solving SSSP without

negative weights in various models of computation such as

parallel (PRAM), distributed (CONGEST), dynamic and semi-

streaming settings. More broadly, even a simple problem like

reachability (finding whether a vertex s can reach another

vertex t) is not yet well understood in these models of

computation.

Finally, we note that for arbitrary edge weights, where we

cannot use scaling, the fastest algorithm for shortest paths with

negative weights remains Bellman-Ford with running time

O(mn). The same O(mn) bound is the also state-of-the-art for

max-weight bipartite matching. Getting running time o(n3−ε)
for either of these problems remains a major open problem.
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